A Survey on the Kähler-ricci Flow and Yau’s Uniformization Conjecture
نویسندگان
چکیده
Yau’s uniformization conjecture states: a complete noncompact Kähler manifold with positive holomorphic bisectional curvature is biholomorphic to C. The Kähler-Ricci flow has provided a powerful tool in understanding the conjecture, and has been used to verify the conjecture in several important cases. In this article we present a survey of the Kähler-Ricci flow with focus on its application to uniformization. Other interesting methods and results related to the study of Yau’s conjecture are also discussed.
منابع مشابه
Gradient Kähler-ricci Solitons and a Uniformization Conjecture
In this article we study the limiting behavior of the KählerRicci flow on complete non-compact Kähler manifolds. We provide sufficient conditions under which a complete non-compact gradient KählerRicci soliton is biholomorphic to C. We also discuss the uniformization conjecture by Yau [15] for complete non-compact Kähler manifolds with positive holomorphic bisectional curvature.
متن کاملA note on Kähler-Ricci soliton
In this note we provide a proof of the following: Any compact KRS with positive bisectional curvature is biholomorphic to the complex projective space. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the previous solutions of Frankel conjecture: T...
متن کاملThe Kähler-ricci Flowon Kähler Surfaces
The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...
متن کامل4 N ov 2 00 8 A note on Kähler - Ricci soliton
In this note we provide a direct proof of the following: Any compact KRS with positive bisectional curvature is CP. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the solution of the Frankel conjecture: Theorem 1. Every compact complex manifold a...
متن کاملOn Yau’s Uniformization Conjecture
Let Mn be a complete noncompact Kähler manifold with nonnegative bisectional curvature and maximal volume growth, we prove that M is biholomorphic to Cn. This confirms the uniformization conjecture of Yau when M has maximal volume growth.
متن کامل